如何调用 Chroma?
本文介绍如何调用流行的向量数据库 Chroma 的两种方式,分别是 Chroma in langchain 和 Chroma official。
Chroma in langchain
embedding 存储向量
以 csv 文档 为例:
1.读取文档
from langchain.document_loaders import CSVLoader #读取csv文档
loader = CSVLoader('./your_path/example.csv')
documents = loader.load()
Python2.处理文档
from langchain.text_splitter import CharacterTextSplitter
# split it into chunks
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
Python3.向量化
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
embedding_function = OpenAIEmbeddings(openai_api_key="your-api-key")
db = Chroma.from_documents(docs, embedding_function, persist_directory="./your-local-directory")
db.persist() #save locally
db.get() #check status
Pythonretrieval 读取数据库
读取本地已保存的数据库文件:
embedding_function = OpenAIEmbeddings(openai_api_key="your-api-key")
db = Chroma(embedding_function=embedding_function, persist_directory="./your-local-directory")
Python注意,可不输入 embedding_function,但 langchain 默认调用的 embedding_function 是 SentenceTransformerEmbeddings,向量的维数与 openai 维数不一致,若用 OpenAIEmbeddings 会导致出错。
执行相似度查询
query = "感到头晕怎么办?"
docs = db.similarity_search(query)
print(docs[0].page_content) # 返回查询结果
Python注意,以上我在 openai 的 function 直接写入了 api-key,其实这对于上传代码或者生产环境都不大安全。放 api-key 还有更好的办法,可参考这篇文章:
Chroma official
embedding 存储向量
1.create chromadb
import chromadb
from chromadb.config import Settings
chroma_client = chromadb.Client()
client = chromadb.Client(
Settings(
persist_directory="your-directory", # Directory to store persisted Chroma data.
chroma_db_impl="duckdb+parquet",
)
)
Python2.create collection
embedding_function = OpenAIEmbeddings(openai_api_key="your-api-key")
question_collection = chroma_client.create_collection(name='question', embedding_function=embedding_function)
Python3.get embedding
假设你的数据结构是 csv 格式,有 ‘id’、’question’ 、 ‘answer’ 列。
import pandas as pd
from openai.embeddings_utils import get_embedding
df = pd.read_csv('your-directory/example.csv')
df['ada_v2'] = df["question"].apply(lambda x : get_embedding(x, engine = 'text-embedding-ada-002')) # get embedding from 'question', and store in 'ada_v2'
df.to_csv("new_example.csv") # new document including 'ada_v2'
Python4.add embedding to collection
需要把 csv 文档 embedding 列的string
格式改成list
,把 id 列的格式改成string
from ast import literal_eval
# Read vectors from strings back into a list
df['ada_v2'] =df.ada_v2.apply(literal_eval)
# Set vector_id to be a string
df['id'] = df['id'].apply(str)
Pythonquestion_collection.add(
ids=df.id.tolist(),
embeddings=df.ada_v2.tolist(),
)
Python5.check collection
question_collection # return Collection(name=question)
question_collection.get() # check the number of ids
question_collection.peek() # check everything
Pythonretrieval 读取数据库
def query_collection(collection, query, max_results, dataframe):
results = collection.query(query_texts=query, n_results=max_results, include=['distances'])
df = pd.DataFrame({
'id':results['ids'][0],
'score':results['distances'][0],
'question': dataframe[dataframe.id.isin(results['ids'][0])]['question'],
})
return df
Pythonquery = "经常感觉心慌气短,尤其在走路时上述症状加重,是气胸的后遗症吗?"
question_query_result = query_collection(
collection=question_collection,
query=query,
max_results=10,
dataframe=df,
)
question_query_result
Python搜索结果示例如下,分数越低,代表向量距离越近,也就是越接近的结果。
参考链接:
langchain.vectorstores.chroma 介绍:
chroma 官网: